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Abstract

Our interest is in the design of multi-agent problem-solving sys-
tems. which we refer to as composite systems. We have proposed an
approach to composite system design by decomposition of problem
statements. An automated assistant called Critter provides a library
of reusable design transformations which allow a human analyst to

search the space of decompositions for a problem.

In this paper we describe a method for evaluating and critiquing

problem decompositions generated by this search process. The
method uses knowledge stored in the form of failure decomposi-
t/ons attached to design transformations. We suggest the benefits of

our critiquing method by showing how it could re-derive steps of a
published development example. We then identify several open
issues for the method.

Introduction

Our group is interested in the design of composite systems,

ones that encompass multiple agents cooperating in an ongo-
ing activity [Fickas & Helm, 1992] 1. We arrived at this inter-

est while studying the processes of software development.

Systems analysts in the domains we studied [Fickas and

Nagarajan, 1988] focused on policies and concerns which

cut across human, hardware and software components. In

composite system design, software agents are treated the

same as human and physical agents, as components to be

integrated together to solve larger system constraints. We

have developed a design model, called Critter, to help a

human designer create a composite system design [Fickas

and Helm, 1992].

Figure 1 shows the place of composite system design

within the more general system lifecycle we envision. We

view the design process of a system as composed of four

phases:

1. Acquisition. The designer acquires an initial, informal

statement of the problem in terms of text descriptions and

diagrams.

2. Formalization. The designer creates an initial formulation

of the problem in terms of system and constraints. The

initial system formally describes a minimal set of

assumptions about possible behavior of the target system.

1. This work was supported by the National Science Foundation
under grant CCR-880485.

The constraints formally describe the desirable behavior

in terms of the initial system.

3. Composite system design. Given the formulation of the

problem as initial constraints and system, the designer

uses Critter to build a formal specification of a composite

system for the problem. A composite system is a set of

interacting, reactive components called agents. Each

agent is associated with a set of responsibilities, con-

straints which the agent's behavior must satisfy. If all

agents behave according to their responsibilities, the

composite system will solve the desired problem.

4. Implementation. The agents of the composite system are

implemented in the appropriate "technology" according

to their specifications. This could mean producing soft-

ware or manufacturing hardware. It might also involve

writing legal statutes or training manuals describing the

responsibilities of humans playing the role of an agent.

Flguro 1. Context of composite system desigr<

1. Acquisition _

2. Formalization _

"_"_L[ system[constraints

3. Composite System _/'l c3 U] I P& Q

4. Implementation

In designing a library circulation system, for example, the

designer fu'st acquires an informal statement of assumptions

about the system, and constraints such as "Library patrons

get the books they want" and "Every book is accounted for".

The designer formalizes the system and constraints. The

designer then uses Critter to design a composite system rcp-
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resenting the library. This formally specifies the responsi-
bilities of agents such as the online catalog ("Report
catalog entry if book title found"), the antitheft devices

("Sound alarm when magnetized book passes through the
gate"), and even the library patrons ("Look in the online

catalog if the book tide is known"). Finally, the library
agents are implemented. For the online catalog and
antitheft device, this would involve writing or acquiring

software and hardware. "Implementing" the library patron
implies writing regulations and guidebooks to inform
patrons of their role.

We have begun to formalize an approach to phase 3,

composite system design, by decomposing problem state-
ments. The designer incrementally decomposes the global
constraints in the initial problem statement into the con-

junction of more manageable subconswaints. The designer
then assigns responsibility for these constraints to particu-

lar agents. For example, the designer of a library system
could decompose the global constraint "Library patrons
get the books they want" into "Library patrons can find the

books they want" and "Library patrons can get the books
they find." The patron and the online catalog agents are
assigned responsibility for the former constraint; the

patron and the library.staff agents arc assigned responsi-
bility for the latter. [Feather, 1987] illustrates the approach
by an informal example.

Critter includes a library of formally-represented com-
posite system design tactics, and a suite of tools for auto-

mated evaluation and critiquing of the designs generated.
To incorporate the decomposition method into Critter, we

need to (l) identify and formalize general tactics for
decomposing problem statements, and (2) identify knowl-

edge which Critter could use to critique problem decom-
positions.

This paper focuses on the latter problem, that of critiqu-
ing problem decompositions. We illustrate a method for

generating critiques, by showing how it rationalizes spe-
cific steps in a published development example [Feather,
1987]. In that example, Feather informally derived an ele-
vator system design from the global constraints of never

unnecessarily delaying passengers, and never moving pas-
sengers further from their destination. The development

was guided by Feather's intuitions of the problem, and his
domain knowledge. We show how we can capture some of
this knowledge, in the form of a library of failure scenar-

ios. We then discuss the research issues raised by this
example.

Our work addresses the workshop in two respects:

1. We propose general techniques for evaluating problem
decompositions in multi-agent systems. These tech-
niques may find use beyond our interests, in formulat-

ing problems for multi-agent planning or for
distributed AI systems.

2. The evaluation approach we propose in this paper
requires techniques for storing and using compiled

abstractions, specifically abstract plans. This workshop
may identify research we can apply to our approach.

Searching for decompositions

In this section, we outline the Critter composite system

design model, and its support for synthesizing problem
decompositions.

Critter treats composite system design as search in a
state space (Figure 2). A typical search algorithm has the
following components:

• A state space representation

• A set of search operators for moving between states
• A solution checker which recognizes satisfactory

states.

• A heuristic evaiuator which identifies promising states.
• A search manager which maintains a record of states

visited and operators applied.

Figure 2 Composite design search.
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Each state in C,itter's search space represents a c
plete composite s,, stem design for the problem at h::
The "search operators" which move from state to state are

design transformations stored in Critter's knowledge base.
The solution states in the search are acceptable composite

system designs -- Critter provides critiquing tools to help
identify these.

The last two components, heuristic evaluation and

search management, are beyond the scope of our research

at present. For heuristic evaluation, we rely on the human
designer. Our studies of composite system design heuris-
tics [Feather, Fickas, and Helm, 1991] [Fickas, Feather,
and Helm, 1991] suggest that this task will have to remain

with the designer in the foreseeable future. Support for
human evaluation of design operators is the focus of other
research [Johnson and Feather, 1991]• As for sear_ : man-
agement, Critter is implemented using an extended form

of IBIS [Conklin and Begeman, 1988] that provides for
separate design states. Critter provides functions for

searching and backtracking in this space• In our current
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implementation,newstatesaregeneratedbyhand-simu-
latingoperatorapplicationusinganeditor.

Intheremainderof thissection,wediscussCritter's
supportforthefirstthreesearchcomponents:staterepre-
sentation,transformations,andsolutionchecking.

Design states

Figure 3 informally represents an initial state for the eleva-
tor design problem we use to illustrate our design
approach. A state (hereafter "design state") in Critter's
design search space has two parts:

1. System. The system portion defines the space of possi-
ble behaviors of the current composite system design.

2. Constraints. The constraint portion of a design state
defines the subset of possible behaviors which are
viewed as legal or desirable.

The system portion of a design state represents the space
possible behaviors of the composite system. It specifies a
set of objects, a set of primitive relations, and a set of
actions which can add or delete object tuples from the
relations. The system is thus similar to a planning domain
for a STRIPS-like planner.

Relations and actions in the system portion are also
labelled by agents. Agents in our model are simple reac-
tive components. A relation labelled by an agent can be
sensed by that agent; an action labelled by an agent can be
controlled by that agent•
• A behavior is a sequence of actions, each action

labelled by its controlling agent• A prefix of a behavior
represents the intermediate state of the composite system
during its operation; to avoid confusion with design states,

we will refer to execution states of the composite system
as "points." As with planning domains, the system portion
is non-deterministic; more than one action may be possi-
ble at a given point.

The system portion in Figure 3 includes two classes of
agents, an elevator and set of passengers. Each passenger
controls its own actions of entering and exiting elevators.
A passenger can sense which floor it is on, and whether or

not it is in a given elevator. Passengers also have a destina-
tion (not shown in the figure), which they know. The
unique elevator controls its action of moving from floor to

floor. It also can wait at a floor (not shown in the figure).
The elevator can sense whether it is on a given floor.

The constraint portion of a design state is composed of a
set of constraints. Each constraint is a predicate which is
true or false for each behavior generated by the system
portion. A constraint may refer to either relations or

actions in the system portion.
The constraint portion of Figure 3 includes two con-

straints:

1. NeverFurther: Elevator passengers should not move
further from their destinations.

2. NoDelays: Passengers should not be unnecessarily
delayed. This means that at each point in the elevator's

behavior, it must either move, take on, or drop off pas-
sengers, unless no passengers exist.

Agents in the system portion can be assigned responsibil-

ity for constraints. If an agent has been assigned responsi-
bility for a constraint, that agent must act to satisfy the
constraint. The agent must control its actions so that all of
the behaviors it generates satisfy the constraint, regardless
of the actions of other agents. We call a constraint which is
the responsibility of some agent an "assigned constraint."

The legal behaviors of a composite system design are
all sequences of actions which can be generated by the
agents in its system portion, and which satisfy all of the
constraints and responsibility assignments of the con-
straint portion.

Figure 3 Initialstate of the elevator problem.

Constraints

;; Passengers do not move further from their destination
NeverFurther:

(At(ft) & Dest(p, f3) & *At(f2) _ Between(fl. f2, f3)).

;; The elevator do not unnecessarily delay
NoDelays:
((3p, f On(p, 0 v 3p In(p))
3f l, f_ move(f|, f2) v 3p enter(p) v 3p exit(p)).

System

e. at(f)
Elevator

",.,
Passenger
/

p: o_(p, j9 /#: enler p: exit
p.. in(p)

move

Ir

We have represented the system portion informally,
which is adequate for the purposes of this paper. Critter
represents the system portion of design states are
expressed in a Numerical Petri Net [Wilbur-Ham, 1985]

notation, extended to include agents.
The constraints are written in a linear-time, quantified

temporal logic extended to include constructs for responsi-
bility assignment [Dubois, 1990]. For the most part, the
constraint notation used in this paper is simply the predi-

cate calculus, except on the following points:
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• Variables app :ing in a constraint are universally
quantified unle _ otherwise indicated.

• Actions appeaz as predicates in constraints. The

expression move(f t, fz) in the NoDclays constraint, for

instance, states that "The elevator moves from fl to f2
at the current point of the system's behavior." Ordinary
predicates are capitalized to distinguish them from
actions.

• Temporal logic operators reference future and past
points in the system's behavior. The only construct we
use in this paper is the * operator, which denotes the

next point. Thus, the expression At(ft) & Dest(p, f3) &
• At(f2) can be read "The elevator is at ft and passenger
p has destination f3 and at the next point the elevator is
at f2-"

• Constraints can include responsibility assignment
operators. [Feather, 1987] and [Dubois, 1990] give a
formal semantics for this construct; we use it infor-
mally throughout.

• The notation C[t/t'] denotes the constraint C with all

occurrences of t replaced by t'. Thus, the expression
NeverFurther[p/p 1] denotes the NeverFurther con-

straint with all occurrences of p replaced by Pl.

Design transformations

Critter has a library of design transformations that func-

tion as OlXaators in the search for an acceptable composite
system design. Each design transformation has a pattern
which matches against parts of an existing design state, a
result which generates in a new design state, and a list of
conditions called domain assumptions that must hold for
the transformation to apply (we do not discuss domain

assumptions in this paper). We will represent the pattern
and re.suit of transformations as Prolog-like clauses.

Transformations are applied int_ractively. The human

designer selects a transformation to apply, and matches the
pattern of the transformation to components of tl_ current
designsmm. The systemthengeneratesa new designstate

incorporatingtheresultofthetransformation.

Indesignby problemdecomposition,most ofthetrans-

formationsappliedareofthefollowingform:

pattern:constraint(C).

result: constraint(Ct & .... & C_.n).
C in the pattern is a constraint. Tim transformation gen-

erates a new stare where C is replaced by a new constraint
C1 & ... & Ca that entails C. This in turn may be decom-
posed into subconswaints.

When the designerjudgesthatthe constraints have been
decomposed into sufficiently simple subconstraints, she
assigns responsibility for each of the ._,.._onstraints to a

single agent. As described above, assi_nl;_g responsibility
for a constraint C to an agent requires mat agent to limit its

actions so that C is met, regardless of the actions of ot_ _.
agents in the system.

Finally, the designer applies transformations to untold

the assigned constraints onto the preconditions of actions
in the system portion. The designer may also have to use

low-level design editing transformations to change the
details of actions and relations in the system.

Our main interest is in the transformations for decom-

position of constraints and assignment of responsibility.
As an example, one class of decomposition transformation
used in this paper is Zone Defense. Intuitively, Zone
Defense decomposes a constraint by
1. Selecting an object.
2. Dividing the object's lifetime into "zones", and

3. Splitting the con-,; ._ into subconstraints based on the
"zone" the object

More formally, gi', :onstraint C and a universally
quantified variable v .re decompose C into subcon-
straints based on poss _ates of objects to which v can
be bound. The applica: . _)f Zone Defense to the Never-
Further constraint of the .;evator problem is as follows:
pattern: constraint(NeverFurther), uv(p, NeverFurther).
result: constraint((Pl)

3f enter(Pt, f) _ NeverFurther[p/pt ]
&

qfl, f2 move(f l, f2) _ NeverFurther[p/Pt ]
&

::if exit(Pt, 0 _ NeverFurther[p/Pt]
&

(3f enter(p1, f) v 3f 1, f2 move(fl, f2)
v :If exit(Pl, f) )).

Intuitively, to ensure that passengers never move further
from their destination, we can ensure that the con,traint

holds , _en the passenger enters an elevator, when z:_ ele-

vator r: wes, and when the passenger exits the elevat, r
Having broken NeverFurther into more manage::r, ie

subconstraints, the designer can next assign responsibi! t_y
for one of the subgoals to the elevator. The only action the

elevator controls are "move" and "wait", so we separate
these subconstraints of the decomposition, and assign
them to the elevator with the Limit Each Action transfor-

mation. The instantiation of this transformation on the
move action reads as follows:

pattern: constraint((Pt)

3fl, f2 move(f l, f2) _ NeverFurther[p/pt]
agent(elevator)).

result: constraint((p0
responsible(c 1,

3fl, f2 move(f l, f2) _ NeverFurther[p/Pl]),
agcr"elevator)).

This tr:, _rmation requires that the elevator control each

move a,_ _ so that NeverFurtber holds, regardless of the
actions,,: ,.iae passengers. Unfortunately, there is no way
for both NeverFurther and NoDclays to be met if Never-
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Furtherisassignedtotheelevatorasshownhere.Twopas-
sengersgoingindifferentdirectionscanentertheelevator
andleavetheelevatornochoicebuttoeitherviolateNev-
erFurtherorNoDelays.Wediscussthisexamplefurther
below.

Detecting solution states

A solution state in Critter's search is a design state where

the system portion does not generate any behaviors which
violate the constraints in the constraint portion. Critter

includes analysis tools to help the analyst identify solution
states. In ['Fickas and Helm, 1992], we discuss several of
these analysis tools and trade-offs between them. In this

paper, we will discuss mainly the OPIE planning tool
[Anderson and Fickas, 1989]. The system portion of a
design state is effectively a planning domain. OPIE is a
planner which shows that a design state is not a solution

by producing a plan incorporating actions from the system
portion for violating one or more constraints. We refer to

such a plan as a failure scenario.

For example, to show that the initial elevator design
state in Figure 3 is not a solution state, OPIE can generate
a plan for violating the NeverFurther constraint from an
initial point supplied by the analyst (+ indicates a relation

added, - indicates a relation deleted):
Initial. On(p, 1), At(1), D(p, 2);
1. enter(p, 1): -On(p, 1)+In(p);
2. move(l, 3): -At(l) + At(3);

>>Violation of NeverFurther <<

At(l) & In(p) & D(p, 2) & *At(3)
& _ Between(I, 3, 2)

This illustrates the general style of solution testing in Crit-
ter, we focus on identifying classes of behaviors or scenar-

ios which violate the constraints, rather than verifying that
the constraints are met. In the next section, we discuss

some of the benefits of this approach. We also identify
some of its limitations, and suggest how to address those
limitations in design by decomposition.

Critiquing with failure scenarios

Critiquing composite system design states by failure sce-
narios offers two benefits for design:

I. Diagnosis. A scenario is a specific behavior of the sys-
tem which violates a constraint. The designer can use
this behavior to diagnose the problems of the current
design state and identify potential solutions.

2. Validation. The system portion of a design state is
effectively a model of what is possible in the design
domain. If a scenario generated from that model is

counterintuitive or unlikely in the domain, this is a hint
that the model is too weak.

Our goal is to gain these benefits for design by problem

decomposition. In this section, we suggest an approach to
critiquing problem decompositions, and demonstrate the

approach by showing how it could reproduce steps taken
in a published composite system design derivation.

Synthesizing an approach

Planning over the system portion is not necessarily the
best way to generate failure scenarios for decompositions,
or for composite system designs in general. The planner
cannot tell how likely, or how important a failure scenario

it generates is. Consequently, it generates many scenarios

with marginal value for design. More seriously, a designer
can miss important failure scenarios in a design problem
by "naive specification" of the problem. The planner relies
entirely on the information in the design state to generate
critiques. This knowledge may be incomplete or incorrect
with respect to the design domain. The designer can

exclude a particular failure, even a common one, by not
including actions in the system portion which allow the

planner to generate that failure. For example, the designer
of a library can miss the possibility of books being stolen,
by not encoding a "steal book" action in the initial design
state.

A critic with domain knowledge can focus more quickly
on serious problems, and can recognize problems even in
naive specifications. We describe a domain-specific critic

called SKATE for library design in [Fickas and Nagarajan,
1988]. SKATE has a case base of 1) library designs, 2)
constraints they meet or violate, and 3) failure scenarios
for those designs. Given a proposed design and a set of

constraints, SKATE retrieves designs from its case base
that match features of the proposed design, and that vio-
late the proposed constraints. It then runs failure scenarios
from the retrieved designs to demonstrate the problems.

Given a library design including unrestricted checkout of
books, for instance, and a constraint "users have a large
selection of books to choose from", SKATE retrieves a

design case with unrestricted checkout. It then executes a

stored failure scenario of a "run" on the library, in which
unrestricted checkout is used to strip the shelves bare.

SKATE's case base points it directly to well-known
library failure scenarios, avoiding the problem of generat-
ing marginally useful scenarios. SKATE also avoids the

problem of naive specifications. The failure scenarios
SKATE generates are not restricted to using the actions
and relations specified in the proposed library design.
They can also include "environment" actions such steating

or destroying books, which a designer might not specify
but which are known to cause problems in the library
domain.
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SKATE, however, suffers from a limited ability to

match designs against cases. In general, it is hard to match
the features of one arbilrary specification to another [Rob-

inson, 1990]. SKATE requires the user to manually map
features of the proposed library design into features used
in SKATE's case base. This task is onerous and error-

prone; important critiques can be missed by user mistakes
in the mapping process.

One solution proposed by Fickas and Nagarajan is to
integrate matching more closely with the process of pro-
ducing designs. They suggested that the proposed design

be generated by domain-specific editor, equipped with a
collection of library components appearing in the case
base. In effect, this limits the designer to producing
designs SKATE knows how to critique.

Based on these considerations, we propose the follow-

ing approach which integrates the approaches of OPIE and
SKATE:

1. We will use Critter's transformation library in place of
the case base of SKATE. Each decomposition transfor-

mation has an attached set of failure scenarios repre-
senting its typical defects. Critter thus plays the role of
the domain-specific editor proposed by Fickas and
Nagarajan.

2. Critter matches failure scenarios when it applies a
transformation. Matching is simpler, compared to
SKATE, because the instantiarion of the transformation

itself guides the matching process.
3. Critter critiques a design state using the OPIE planner.

OPIE produces plans by specializing and refining pre-
vionsly matched failure scenarios.

This approach addresses the problem of marginally useful
scenarios by storing a library of typically useful scenarios
on transformations, and using these scenarios to focus the

planner. Our study of failures in multi-agent systems [Fic-
kas, Feather, & Helm, 1991] suggests that we can find
such characteristic failure scenarios for problem decompo-

sitions. The approach also addresses the naive modelling
problem by allowing failure scenarios to introduce new

relations and actions into the design state being critiqued.
As in SKATE, these "environment" components represent
knowledge of well-known problems that crop up in multi-

agent systems.
To illustrate this approach, we next show how critiques

generated this way could anticipate two design steps

which occurred in the composite system design develop-
ment described in [Feather, 1987].

Focusing on a decomposition failure

Recall that Feather's elevator design problem had two ini-
tial constraints:

1. Passengers should never move further from their desti-
nation (NeverFurther).

2. Passengers should not be unnecessarily delayed
(NoDelays).

From the constraint that passengers never move further
from their destination, the designer in Feather's example
"chooses the implication" that passengers in the same ele-

vator must be travelling in the same direction. We show
how a failure scenario can focus the planner to reproduce

this design step.
Earlier we showed a development step which assigned

the NeverFurther goal to the elevator. This step used a
transformation called Limit Each Action. As noted above.

this assignment requires the elevator to satisfy NeverFur-
ther for all combinations of passengers and floors, regard-
less of prior actions of the passengers involved. Critter can
generate an interesting counterexample to this constraint
using a scenario attached to the Limit Each Action trans-

formation. The attact_.ed scenario is called "incompatibility
conspiracy". The abstract incompatibility conspiracy sce-
nario requires that:
1. There are two agents in the system portion whose state

can affect the truth of the constraint assigned by the
transformation.

2. These two agentscan acttoreacha stateS where an

applicationoftheactionA willfailtosatisfythecon-

straintforeitherone agent,orfortheother.For the

assignedconstraintC and limitedactionA, we can

compute theconditionson thestateS theconspiring

agentsmust reach.Specifically,we regress3a I,a2

(C[al]& C[a2l)throughtheactionA.

Instantiatingthescenarioon theapplicationofLimitEach

Action,we geta goalofgeneratingastatewhere:

* Therearetwo passengersinanelevatoron a floorfl

" The two passengershave destinationsf3,f4

* No floorf2existssuch thatBetwcen(f l,f2,f3)&

Between(fl, f2, f4)
It remains for the planner, OPIE, to try to extend this min-
imal "scenario" into a plan. This requires a considerable

effort on OPIE's part. If such a plan can be found, how-
ever, it provides a motivation for the requirement that pas-

sengers only enter the elevator with compatible passengers
-- passengers travelling in the same direction.

Using an abstract failure scenario thus allowed the plan-
ner to recognize a critical deficiency, one which Feather
deducedinformallyinhisexample.

Critiquing a naive communication model

In another step of Feather's development of the elevator

problem, passengers have been assigned to enter the ele-
vator when a suitable one arrives at the passenger's floor.
The elevator has been assigned to take passengers to their

destination when they enter. From this, the designer in
Feather's example derives the constraint that the passen-

gers communicate their presence on entering the elevator.
We show how an abstract failure scenario could lead a
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designertothiscommunicationprotocol,byintroducing
environmentactionsandrelationswhichcauseastereo-
typicalbreakdownofcommunication.

ThestartingpointforthisdevelopmentistheNoDelays
goal,whichrequiresthattheelevatormusteithermoveor
loadandunloadpassengerswhenanypassengeris
present.Thedesignerappliesamacro-transformation
calledSequential Split to the NoDelays goal. This trans-

formation combines a Zone Defense operator with respon.
sibility assignment. It subdivides the task of moving
passengers into sequential zones, based on the status of the

passenger. In particular, the designer uses Sequential Split
to make passengers responsible for NoDelays when the
elevator arrives at a floor. Responsibility passes sequen-
tially to the elevator once the passenger enters. The instan-

tiated version of Sequential Split expresses this formally:
pattern: constraint(

On(p, f) & At(f) _ NoDelays),
agent(p), agent(elevator).

result: constraint(

On(p, 0 & At(e, f) _ Responsible(p, enter(p, f))
&

(In(p) & At(fi)

Responsible(elevator, 3 f2 move(f l, f2)) )))
agent(p), agent(elevator).

Note that the requirement that the elevator moves, coupled
with the NeverFurther constraint, ensures that the passen-
ger will eventually arrive at its destination.

Our studies of transportation system failures suggest
that sequential decompositions, while common, frequently
fail due to "hand-off errors". In one hand-off failure sce-

nario, for instance, the agent responsible for the second

half of a sequential decomposition fails to pick up where
the first agent leaves off, because it does not recognize it
has become responsible. Translating this to the current
problem, the elevator may fail to move, because it does
not recognize that the passenger has entered and thus
handed off responsibility for NoDelays.

This sequence of events is encoded as an abstract sce-

nario attached to Sequential Split. Instantiated with the
Sequential Split transformation above, it asks the planner
to expand a sequence of states where:
1. qp, f On(p, f) & At(f);

2. In(p) & At(f) & --ElevatorResponsibleForMove
Note that the abstract scenario introduces a new binary

relation ElevatorResponsibleForMove. This relation rep-
resents the elevator's internal model of the condition that
activates its responsibilities. The failure scenario also

introduces actions for asserting and deleting this relation.
As with SKATE scenarios, abstract scenarios in Critter

can add environment actions and relations to the design
state for use in generating critiques. In this example, the
new components allow OPIE to generate a plan in which a
passenger enters the elevator, but the elevator does not

recognize this (ElevatorResponsibleForMove is false), and
so does not move.

Environment components introduced by attached sce-
narios allow OPIE to avoid the naive modelling problem.

They force the designer to consider behavior which is typ-
ical for a class of problem decompositions, even if the

designer has neglected to include components which sup-
port such behavior in the initial design state.

Returning to our example, the designer acknowledges
the scenario, and designs a communication protocol to

prevent it. The passenger becomes responsible for notify-
ing the elevator when it enters the elevator. The elevator

will acknowledge the handoff. This can be implemented
by a familiar interface: passengers hit a button on entry to
the elevator, and the button lights in response.

The handoff failure scenario thus produces and rational-
izes an interface component developed in the Feather
example. This step also shows how a failure scenarios

incorporating environment components can expose naive
assumptions about inter-agent communication, and lead to
more realistic agent interfaces as a result.

Conclusions and Issues

We have proposed an approach to composite system
design based on problem decomposition. To evaluate

designs generated by the approach, we have proposed a

method of scenario-based critiquing using compiled
knowledge of typical failures of problem decompositions.
Our method combines the approaches of earlier plan-
based and case-based design critics we have developed. It
addresses the problem of matching cases which stymied
the case-based critic. It also helps solve the problems of
unfocused search and naive modelling which were the
principle drawbacks of the plan-based critic.

There remain numerous open research issues for the
approach. Two issues in particular may be of interest to
this workshop.

First, can we store scenarios on transformations which

are specific enough to be more useful than simply running

the planner? For example, the incompatibility conspiracy
scenario was extremely general, and costly to instantiate.
OPIE could possibly find the associated plan just as
quickly by directly analyzing the design state. One rejoin-
der is that the transformation associated with the incom-

patibility conspiracy scenario, responsibility assignment,
is too general to have useful scenarios associated with it.

Increasing the grain size of transformations, and placing
scenarios only on the large-grained transformations, might
give better results on evaluation, but at a cost of increasing

the size of Critter's transformations and complicating their
application. The research issue: how can we evaluate the

trade-off between more effective evaluation knowledge,
versus more general problem decomposition methods?
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Related to the issue of transformation versus scenario

grain size is the question of combining multiple failure
scenarios. For example, consider the step which split the
NoDelays goal. In that step, we applied Sequential Split,
which combined three smaller transformations (Zone

Defense and two responsibility assignments). The result

was tested by scenarios stored on Sequential Split. Sup-
pose instead we had applied the three primitive transfor-
mations. How should we merge the separate stored failure

scenarios into a combined scenario; or, alternatively, how
can we decide which of the scenarios is the most important
to run?

Related Work

Our work extends and formalizes that of Feather [1987],

who proposed the concept of responsibility assignment
and informally demonstrated a development methodology
based on decomposition and assignment of constraints.
[Dubois, 1990] developed a constraint formalism, and a

development methodology incorporating responsibility
assignment, which has influenced our own work.

The decomposition design process can be viewed as a

multi-agent extension of "operationalization" [Mostow,
1983]. Mostow's FOO and BAR systems designed prob-

lem-solving programs by decomposing and weakening
constraints until they were expressible in terms of easily
computable functions. The problem-solving systems we
are designing, however, incorporate a broad range of

social, hardware, and software systems. Consequently, it is
difficult to state a compact operationality criterion for a

given design problem. We rely on the human analyst to
judge operationality. Similarly, constraint violations in our

design problems may have consequences ranging from
trivial to life-threatening. Weakening and approximating

constraints therefore is much more problematic; we do not
attempt to address it with our current research.

[Steier and Kant, 1985] argue for the importance of exe-

cution in designing algorithms. Our style of critiquing is
motivated by similar considerations. The approach we
propose grows out of our previous work on case-based
[Fickas and Nagarajan, 1988] and planner-based [Ander-

son and Fickas, 1989] critics. [Dubois and I-Iagelstein,
1988] propose a slightly different approach to critiquing:
derive implications by forward inference over the con-
straints, and present them to the user for validation. A

critic using this approach requires knowledge to decide

which deductions to make; abstruct failure scenarios pro-
vide our method with this guidance.

Critter's critiquing task is similar to that of failure crit-
ics in planning systems such as CHEF [Hammond,

1989].The failure critics of CHEF attempt to steer CHEF's

planner away from two types of failures:

1. Planning failures. These occur when the planner gener-
ates a plan that does not meet its goals, due to a false

move by the part of the planner e. g. misordering two
interacting steps.

2. Expectation failures. These occur when the planner

generates a plan which does not meet its goal when
executed in the environment of interest. Expectation

failures arise when the planner's knowledge of its
domain is incomplete or incorrect.

CHEF includes mechanisms for learning new failure crit-
ics from past planning or expectation failures. It also auto-
matically indexes failures to planning moves that avoid

those failures, and to moves which repair those failures.

In Critter, the "planner" is the user, and the "planning
moves" are the transformations in Critter's library. The
failure scenarios on a transformation identify both plan-
ning failures and expectation failures which could arise

from using that transformation.
Critter does not, however, automatically learn failure

scenarios from failures when they are encountered, due to

the generality of its transformation library. CHEF was
designed to operate within a fairly specific task domain

(its example domain was Szechuan cooking). Conse-
quently, it did not have to be too "finicky" in its choice of
failures to learn [Minton, 1990]. In contrast, we hope to
reuse Critter's knowledge base across diverse domains,

such as transportation systems, network applications, and
resource management systems. This makes it more diffi-
cult to automatically decide whether a given failure sce-
nario is worth storing, and at what level of abstraction it
should be stored. Our initial focus is thus on automated

reuse of handpicked failure scenarios; learning the scenar-
ios from previous design effort is a topic for future work.

3,milarly, Critter does not au'., matically index from
fa_i,ares to avoidance or repa:: "ransformations. The
"plans" (formal specifications) that Critter produces are
allowed to contain more complex operators -- iterative,

conditional, and uninstantiated operators, for example --
than the plans of CHEF. This makes it harder to explain a
failure, assign blame for the failure to specification com-
ponents, and index through those components to relevant

transformations. For the present, we rely on the designer
to perform indexing, but view it as an important area for
future research.
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